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ABSTRACT 
 

Nonlinear conjugate gradient (CG) methods are significant for solving large-scale, unconstrained optimization problems, providing vital knowledge to 
determine the minimum point or optimize the objective functions. Many studies of modifications for nonlinear CG methods have been carried out to improve 
the performance of numerical computation and to establish global convergence properties. One of these studies is the modified CG method, which has been 
proposed by Rivaie et al. (2015). In this paper, we modify their work in such a way that one can obtain efficient numerical performance and global convergence 
properties. Due to the widespread use of the strong Wolfe line search in practice, our proposed modified method implemented its use. At the same time, to 
show the performance of the modified method in practice, a numerical experiment is performed. 
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1. Introduction  

Due to their global convergence and low memory requirements, 
conjugate gradient methods are widely used for solving 
unconstrained optimization problems. The unconstrained 
optimization problems can be formulated as follows: 

 minx∈Rn  f(x),                                              (1.1) 
 where f: Rn → R    is nonlinear, continuously differentiable, and its 
gradient is denoted by g(x), which should be available, when 
applied to solve the Problem (1.1), starting from an initial point  
x0 ∈ Rn , and follows the iteration formula:          

xk+1 = xk + αkdk  ,     k = 0,1,2 …,            (1.2) 
where  αk > 0 is a step-size. The step-size is determined by a line 
search, and dk is the search direction defined by: 

 dk = {
 −gk                          if  k = 0,
−gk  + βkdk−1      if  k ≥ 1,

             (1.3)  

where  gk =  ∇f(xk) is the gradient vector of the function  f at xk 
and gk

T is the transpose of gk. The value  βk is a scalar known as the 
CG coefficient. The well-known classical CG methods formulas for  
βk are: 

βk
HS =  

gk
T(gk−gk−1)

(gk−gk−1)Tdk−1
 ,                                   (1.4) 

βk
FR =  

gk
Tgk

gk−1
T gk−1

 ,                                      (1.5) 

βk
PRP =  

gk
T(gk−gk−1)

gk−1
T gk−1

 ,                                  (1.6) 

βk
CD = −

gk
Tgk

dk−1
T gk−1

  ,                             (1.7) 

βk
LS = − 

gk
T(gk−gk−1)

dk−1
T gk−1

  ,                              (1.8) 

βk
DY =  

gk
Tgk

(gk−gk−1)Tdk−1
  .                          (1.9) 

To analyze the convergence, the CG methods are implemented 
under exact and inexact line searches. If the line search is exact, the 
step length αk is obtained in the direction dk by the rule: 

f(xk + αkdk) = min
α≥0

 f(xk + αdk).            (1.10) 

In the inexact line search, αk can be obtained using the strong Wolfe 
line search, in which the following conditions satisfy: 

f(xk + αkdk) ≤ f(xk) +  δαkgk
Tdk,             (1.11) 

|g(xk + αkdk)Tdk|  ≤ −σgk
Tdk,                   (1.12)  

where  0 < δ < σ <  1 . 
To prove the global convergence of CG methods, the following 
sufficient descent condition is always required: 

:  

 gk
Tdk ≤ −𝑐‖gk‖2 ,   for k ≥ 0 , where 𝑐 > 0  (1.13) 

The performance and behavior of different conjugate gradient 
methods for general non-quadratic functions with an inexact line 
search correspond to different choices for the important coefficient  
βk. The global convergence properties of CG methods are essential 
properties for studying the coefficient β_k and obtaining good 
numerical performance. The CG methods were categorized by 
Andrei (2011) into three different methods: the classical CG method, 
the scaled CG method, and the hybrid and parameterized CG 
method. Al-Baali (1985), Touati-Ahmed and Storey (1990), and 
Gilbert and Nocedal (1992) used the inexact line search with a 
strong Wolfe condition in order to analyze the global convergence 
properties of FR(1.5) is known as Fletcher and Reeves (1964) and 
PRP(1.6) is known as Polak–Ribiere–Polyak (1969) methods. Al-
Baali (1985) proved the global convergence of the FR method if the 
strong Wolfe line search is used and the parameter σ is restricted in 
(0,

1

2
). In addition, Guanghui et al. (1995) extended Al-Baali’s (1985) 

result with the case that σ =
1

2
. The PRP and HS(1.4) is known as 

Hestenes and Steifel (1952) methods have excellent performance in 
practical computation, due to the inclusion of an approximate 
restart feature when jamming occurs, but their convergence 
properties are not perfect (Jiang et al., 2018). Nevertheless, both 
perform better than FR in practical computations. The study of the 
PRP method has an efficient approach and has made significant 
improvements. Gilbert and Nocedal (1992) proceeded with 
classificatory analysis and concluded that the PRP method is 
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globally convergent if  βk
PRP is constrained to be non-negative and 

αk is determined by a line search step satisfying the sufficient 
descent condition  gk

Tdk ≤  −c ‖gk‖2. 
Many studies have been carried out to establish global convergence 
and obtain competitive numerical results by proposing new 
methods or modifying existing methods.  
Rivaie et al. (2012) have proposed a new coefficient denoted by 
βk

RMIL, as follows: 

βk
RMIL =

gk
T(gk − gk−1)

‖dk−1‖2
, 

which is globally convergent and has good performance when it is 
applied under exact line search. Dai (2016) made a simple 
modification to Rivaie et al. (2012), and, on this basis, Yousif (2020) 
established the sufficient descent conditions and global 
convergence using the strong Wolfe line search. Additionally, Rivaie 
et al. (2015) proposed a new class of nonlinear conjugate gradient 
coefficients with exact and inexact line searches and named this the 
RMIL+ method. The coefficient  βk+1 in RMIL+ method is defined as 
follows: 

βk+1
RMIL+  =   

gk+1
T (gk+1−gk−dk) 

‖dk‖2  
,                    (1.14)  

In this paper, in order to obtain better numerical performance than the 
methods in Rivaie et al. (2012), Rivaie et al. (2015), and Yousif (2020), 
we performed a modification on the method in Rivaie et al. (2015). In 
Section 2, we present a modified CG method and algorithm. The 
descent property and the global convergence under the strong Wolfe 
line search are described in Section 3. In Section 4, we present 
preliminary numerical results and discussion. Lastly, in Section 5, we 
present a conclusion.  

2. Simple Modification of the RMIL+ 
Method 

In this section, we modify the CG method in Rivaie et al. (2015), 
known as the RMIL+ method, to obtain better results. We refer to 
the modified method by MRMIL+, and its coefficient is defined as 
follows: 

βk+1
MRMIL+ = max{0 , βk+1

RMIL+}.                    (2.1) 
Clearly, from (2.1), the suggested coefficient satisfies the following 
two inequalities: 

βk+1
MRMIL+ ≤

‖gk‖2

‖dk‖2  , if  
gk+1

T gk+gk+1
T dk 

‖dk‖2  
≥ 0 .          (2.2) 

βk+1
MRMIL+ ≤ 𝑚

‖gk‖2

‖dk‖2, if   gk+1
T gk+gk+1

T dk 

‖dk‖2  
< 0 , where  𝑚 > 1.  

(2.3) 
To distinguish between RMIL+ in Rivaie et al. (2015), and RMIL+ in 
Yousif (2020), we use MRMIL instead of RMIL+ as used in  Rivaie et 
al. ( 2015). 
By defining a new coefficient in (2.1), we can define the following 
new algorithm: 

Algorithm 1 
• Step 1: Initialization given  x0 , set  𝑘 = 0. 
• Step 2: Compute  βk+1  based on (2.1). 
• Step 3: Compute dk+1  based on (1.3). If  gk = 0,  then stop. 
• Step 4: Compute αk based on a strong Wolfe line search (1.11), (1.12). 
• Step 5: Updating new point based on (1.2). 
• Step 6: Convergent test and terminal criteria. 

If    f(xk+1) ≤ f(xk)  and  ‖gk‖ ≤ 𝜖,  then stop. 

Otherwise go to Step 1 with  𝑘 = 𝑘 + 1. 

3. Convergence Analysis 

In this section, using the strong Wolfe line search, we will show the 
convergence properties of  MRMIL +; essentially, the convergence 
properties of Algorithm 1. Since global convergence involves 
satisfying the sufficient descent condition, we first prove sufficient 
descent. The following basic assumption on the objective function f 
is always needed in the analysis of CG methods’ global convergence 
properties, and Lemma 1 is needed to show the sufficient descent 
condition and global convergence properties of the MRMIL + 
method. 
Assumption 1 
(i) F(x) is bounded below on the level set on  Rn and is continuously 

differentiable in a neighborhood N of the level set  Γ =
{x ∈ Rn| f(x) ≤ f(x0)} at the initial point  x0, there exists a constant 
B > 0 such that: 

                       ‖x − y‖  ≤ B ,          ∀ x, y ∈  N           (3.1) 
(ii) The gradient g(x) = ∇f(x) is Lipschitz continuous in N, so a  constant  

L >  0 exists, such that:     

                ‖g(x) − g(y)‖ ≤ L‖x − y‖ for anyx, y ϵ N. (3.2) 
   

By using the Assumption 1, there exists a constant λ ≥ 0 such that: 

                ‖g(x)‖  ≤ λ   ∀ x ∈  Γ.               (3.3) 
For example, if a function satisfying Assumption 1 is the Rosenbrock 
function (Andrei, 2008), which is defined as: 

f(x) = 100(x2 − x1
2)2 + (1 − x1)2 , x ∈  ℝ2, 

with 

∇f(x) = (
−400x1(x2−x1

2)+2(1−x1)

200(x2−x1
2)

). 

So, for the initial point x0 = [−1   1], we get 

∇f(x0) = (4
0
), and ‖∇f(x0)‖ = √(4)2 + (0)2 = √16 = 4. 

Lemma 1: Let the sequences {gk} and {dk} be generated by 

Algorithm 1. Then for  𝜎 <
1

2
   and  𝑘 ≥ 0, we have: 

‖gk‖

‖dk‖
 ≤

2

4−3𝜏
,                                       (3.4) 

‖gk‖

‖dk‖
 ≤

𝑚

𝑚−𝜏
,                                        (3.5) 

where 𝜏 ∈ (
2

3
, 1),  and  𝑚 > 1 . 

Proof: The proof is by induction. For k = 0, it is obvious that 
‖g0‖

‖d0‖
= 1 ≤

2

4−3𝜏
 , 

‖g0‖

‖d0‖
= 1 ≤

𝑚

𝑚−𝜏
 . Next, assume that (3.4) 

and (3.5) are both true for k ≥ 1. Then by rewriting equation 

(1.3) for k + 1 and then by using the dot product, we get: 

dk+1. dk+1 = (−gk+1  + βk+1dk). (−gk+1  + βk+1dk), 
which leads to: 
 

‖dk+1‖2 = ‖gk+1‖2 − 2βk+1gk+1
T dk + (βk+1 ‖dk‖) 2.  (3.6)     

Again rewriting (1.3) as: 

dk+1 + gk+1 = βk+1dk ,                        (3.7) 
and then from the definition of the dot product, we obtain:  

‖dk+1‖2 + ‖gk+1‖2 + 2gk+1
T dk+1 = (βk+1 ‖dk‖) 2.         (3.8) 

Substituting (3.8) in (3.6), led to: 

‖dk+1‖2 + ‖gk+1‖2 + 2gk+1
T dk+1 = ‖dk+1‖2 − ‖gk+1‖2 +

2βk+1gk+1
T dk , 

2‖gk+1‖2 + 2gk+1
T dk+1 = 2βk+1gk+1

T dk , 

‖gk+1‖2 + gk+1
T dk+1 = βk+1gk+1

T dk , 

‖gk+1‖2 = −gk+1
T dk+1 + βk+1gk+1

T dk.        (3.9)   

Taking the absolute value of both sides of (3.9) and (1.12), we have: 
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‖gk+1‖2 = |−gk+1
T dk+1 + βk+1gk+1

T dk| ≤ |gk+1
T dk+1| +

𝜎|βk+1||gk
Tdk|.                                  (3.10) 

Applying the Cauchy-Schwartz inequality,  and using (2.2), we get: 

‖gk+1‖2 ≤ ‖gk+1‖‖dk+1‖ + 𝜎
‖gk+1‖2

‖dk‖2
‖gk‖‖dk‖ , 

‖gk+1‖2 ≤ ‖gk+1‖‖dk+1‖ + 𝜎‖gk+1‖2 ‖gk‖

‖dk‖
 . 

Applying induction hypothesis of Lemma1, we obtain: 

‖gk+1‖2 ≤ ‖gk+1‖‖dk+1‖ +
2𝜎

4−3𝜏
‖gk+1‖2. 

By letting   𝛾 =
2𝜎

4−3𝜏
 , then: 

‖gk+1‖2 − 𝛾‖gk+1‖2 ≤ ‖gk+1‖‖dk+1‖ , 
‖gk+1‖2(1 − 𝛾) ≤ ‖gk+1‖‖dk+1‖ , 
‖gk+1‖

‖dk+1‖
 ≤

1

1−𝛾
≤

2

4−3𝜏
 .                    (3.11)  

From (3.10), and applying the Cauchy–Schwartz inequality, and from 
(2.3), we get: 

‖gk+1‖2 ≤ ‖gk+1‖‖dk+1‖ + 𝜎𝑚
‖gk+1‖2

‖dk‖2
‖gk‖‖dk‖ , 

‖gk+1‖2 ≤ ‖gk+1‖‖dk+1‖ + 𝜎𝑚‖gk+1‖2 ‖gk‖

‖dk‖
 . 

Applying induction hypothesis, we obtain: 

‖gk+1‖2 ≤ ‖gk+1‖‖dk+1‖ +
𝜎𝑚

𝑚−𝜏
‖gk+1‖2. 

By letting   𝜗 =
𝜎𝑚

𝑚−𝜏
 , then: 

‖gk+1‖2 − 𝜗‖gk+1‖2 ≤ ‖gk+1‖‖dk+1‖ , 
‖gk+1‖2(1 − 𝜗) ≤ ‖gk+1‖‖dk+1‖ , 
‖gk+1‖

‖dk+1‖
 ≤

1

1−𝜗
≤

𝑚

𝑚−𝜏
 .                          (3.12) 

Therefore, from (3.11) and (3.12), Lemma 1 holds for k +  1. The 
proof is completed. 

3.1. Sufficient Descent Condition: 
Theorem 1. Suppose Assumption 1 is true, then Algorithm 1 
satisfies the sufficient descent property (1.13) with: 

  𝑐 = 1 −
2𝜎

4−3𝜏
    and     𝑐 = 1 −

𝜎𝑚

𝑚−𝜏
 . 

Proof: From (1.4) and (2.2), then:  

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2 + 𝛽𝑘+1𝑔𝑘+1

𝑇 𝑑𝑘 ≤ −‖𝑔𝑘+1‖2 +
‖𝑔𝑘+1‖2

‖𝑑𝑘‖2
𝑔𝑘+1

𝑇 𝑑𝑘   .                             (3.14) 

from (1.12) and the Cauchy–Schwartz, we get: 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2

‖𝑑𝑘‖2
𝑔𝑘+1

𝑇 𝑑𝑘  ≤ −‖𝑔𝑘+1‖2 +

𝜎
‖𝑔𝑘+1‖2

‖𝑑𝑘‖2
‖𝑔𝑘‖‖𝑑𝑘‖ = −‖𝑔𝑘+1‖2 + 𝜎‖𝑔𝑘+1‖2 ‖𝑔𝑘‖

‖𝑑𝑘‖
 . 

From (3.4) in Lemma1, we obtain: 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

2𝜎

4−3𝜏
‖𝑔𝑘+1‖2 = −‖𝑔𝑘+1‖2 (1 −

2𝜎

4−3𝜏
)       (3.15) 

In addition, from (3.14), (2.3), (1.12), and Cauchy–Schwartz 
inequality, we get: 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2

‖𝑑𝑘‖2 𝑔𝑘+1
𝑇 𝑑𝑘  ≤ −‖𝑔𝑘+1‖2 +

𝜎𝑚
‖𝑔𝑘+1‖2

‖𝑑𝑘‖2
‖𝑔𝑘‖‖𝑑𝑘‖ = −‖𝑔𝑘+1‖2 + 𝜎𝑚‖𝑔𝑘+1‖2 ‖𝑔𝑘‖

‖𝑑𝑘‖
. 

From (3.5) in Lemma1, we obtain: 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

𝜎𝑚

𝑚−𝜏
‖𝑔𝑘+1‖2 = −‖𝑔𝑘+1‖2 (1 −

𝜎𝑚

𝑚−𝜏
).                                                    (3.16) 

Therefore, from (3.15), (3.16), we can deduce that (1.13) holds 
for 𝑘 ≥ 0. The proof is completed. 

3.2 Global Convergence: 
Lemma 2. Suppose Assumption 1 holds true. Consider any CG 

method of from (1.3), where  dk+1 is a descent search direction and  
αk  satisfies the strong Wolfe line search. The following condition, 
known as the Zoutendijk condition, holds: 

∑
‖gk‖ 4

‖dk‖2
∞
k=1 <  ∞. 

For the proof of this Lemma 2. Please refer to Zoutendijk (1970).  
Theorem 2. Suppose that Assumption 1 holds true. Then Algorithm 
1 is convergent, as follows: 

lim
k→∞

‖gk‖ = 0   or   ∑
‖gk‖ 4

‖dk‖2
∞
k=1 <  ∞.  

Proof: We use a contradiction; that is, if Theorem 2 is not true, then 
there exists a constant  𝜖 > 0 , such that:  

‖gk‖ ≥ 𝜖.                                                (3.17) 
We can rewrite (1.3) as: 

𝑑𝑘+1 = − 𝑔𝑘+1  +  𝛽𝑘+1𝑑𝑘                     (3.18) 
and multiply both sides of (3.18) by  dk+1  , thus obtaining:  

‖𝑑𝑘+1‖2  =  −𝑔𝑘+1
𝑇 𝑑𝑘+1 + 𝛽𝑘+1𝑑𝑘+1

𝑇 𝑑𝑘 .    (3.19) 
Case 1, using (2.2), and divide both sides of (3.19) by ‖gk+1‖4 , we 
obtain:  

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4  ≤  −
𝑔𝑘+1

𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖4 +
‖𝑔𝑘+1‖2

‖𝑑𝑘‖2  
𝑑𝑘+1

𝑇 𝑑𝑘

‖𝑔𝑘+1‖4, 

applying the Cauchy–Schwartz, we get: 

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4
 ≤  −

𝑔𝑘+1
𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖4
+

1

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2
 , 

≤ −
1

2
(

𝑔𝑘+1

‖𝑔𝑘+1‖2 +
𝑑𝑘+1

‖𝑔𝑘+1‖2
)

2 1

2

‖𝑔𝑘+1‖2

‖𝑔𝑘+1‖4 −
1

2

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4 +
1

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2  

, 

≤  −
1

2

1

‖𝑔𝑘+1‖2
−

1

2

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4
+

1

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2
 , 

≤  −
1

2

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4 +
1

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2 , 

3

2

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4  ≤  
1

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2, 

From (3.4) in Lemma 1, we get: 
‖dk+1‖

‖gk+1‖2  ≤
2

3
 

1

‖dk‖
 ≤

2

3

μ

‖gk‖
 , where   μ =

2

4−3𝜏
. 

Squaring both sides of the above inequality, we obtain: 
‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4
≤

4

9

𝜇2

‖𝑔𝑘‖2
, 

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4 ≤
4

9

𝜇2

‖𝑔𝑘‖2 ≤  
4𝜇2

9
∑

1

‖𝑔𝑘‖2
𝑘
𝑖=0   ≤

4𝜇2

9

𝑘

𝜖2 , 

‖𝑔𝑘+1‖4

‖𝑑𝑘+1‖2   ≥
9𝜖2

4𝜇2𝑘
 .                                (3.20) 

Therefore, from (3.20) and (3.17), it follows that: 

∑
‖𝑔𝑘+1‖4

‖𝑑𝑘+1‖2
∞
𝑘=0 = ∞. 

This contradicts the Zoutendijk condition in Lemma 2. Therefore, 
the proof is completed. 

Case 2, using (2.3) and dividing both sides of (3.19) by ‖gk+1‖4 , 
we obtain:  

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4  ≤  −
𝑔𝑘+1

𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖4 + 𝑚
‖𝑔𝑘+1‖2

‖𝑑𝑘‖2  
𝑑𝑘+1

𝑇 𝑑𝑘

‖𝑔𝑘+1‖4, 

applying the Cauchy–Schwartz inequality, we get: 

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4  ≤  −
𝑔𝑘+1

𝑇 𝑑𝑘+1

‖𝑔𝑘+1‖4 +
𝑚

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2 , 

≤  −
1

2
(

𝑔𝑘+1

‖𝑔𝑘+1‖2
+

𝑑𝑘+1

‖𝑔𝑘+1‖2
)

2

−
1

2

‖𝑔𝑘+1‖2

‖𝑔𝑘+1‖4
−

1

2

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4
+

𝑚

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2
 , 

≤  −
1

2

1

‖𝑔𝑘+1‖2 −
1

2

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4 +
𝑚

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2 , 

≤  −
1

2

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4 +
𝑚

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2 , 
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3

2

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4  ≤  
𝑚

‖𝑑𝑘‖
 

‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2, 

From (3.5) in Lemma 1, we get: 
‖𝑑𝑘+1‖

‖𝑔𝑘+1‖2
 ≤

2

3
 

𝑚

‖𝑑𝑘‖
 ≤

2

3

𝑚𝜌

‖𝑔𝑘‖
 , where   𝜌 =

𝑚

𝑚−𝜏
, 

Squaring both sides of the above inequality, we obtain: 
‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4
≤

4

9

𝑚2𝜌2

‖𝑔𝑘‖2
, 

‖𝑑𝑘+1‖2

‖𝑔𝑘+1‖4
≤

4

9

𝑚2𝜌2

‖𝑔𝑘‖2
≤  

4𝑚2𝜌2

9
∑

1

‖𝑔𝑘‖2
𝑘
𝑖=0   ≤

4𝑚2𝜌2

9

𝑘

𝜖2
 , 

‖𝑔𝑘+1‖4

‖𝑑𝑘+1‖2
  ≥

9𝜖2

4𝑚2𝜌2𝑘
.                                  (3.21) 

Therefore, from (3.21) and (3.17), it follows that: 

∑
‖gk+1‖4

‖dk+1‖2
∞
𝑘=0 = ∞. 

This contradicts the Zoutendijk condition in Lemma 2. Therefore, 
the proof is completed. 

4. Numerical Results and Discussion  

In this section, to show the efficiency of the proposed method in 
practice, we compare it with the RMIL, MRMIL, and RMIL+ methods. 
Most of the test problems used are from Andrei (2008). The 
condition ‖gk‖  ≤  ϵ  where  𝜖 =  10−6 is used as a stopping 
criterion. All methods are run on a PC ACER (Intel® Core™ i3-3217u 
CPU @ 1.8 GHZ, with 4.00 GB RAM, Windows 10 Home Premium). 
The comparison is based on the number of iterations and CPU time. 
The strong Wolfe line search is used as the inexact line search. The 
performance results are shown in Figures 1 and 2, respectively, 
using the performance profile introduced by Dolan and More 
(2002). In Table 1, Dim is for the dimension of the test functions. 

In the Dolan and More performance, we use the performance profile 
to introduce the notion of a means to evaluate and compare the 
performance of the set solvers s on a test set  p. Assuming  ns  
solvers and  np problems exist, for each problem p and solver  s, 
they defined  tp,s as computing time (the number of iterations or 
CPU time or others) required to solve problem p by solver  s. They 
compared the performance on problem p by solver s with the best 
performance by any solver in this problem by using the performance 
ratio: 

rp,s =  
tp,s

min {tp,s ∶s ∈ S}
  . 

Suppose that a parameter  rM  ≥  rp,s  for all p  and  s  is chosen, 
and rp,s =  rM if and only if solver s does not solve problem p. The 
performance solver s of the given problems must be robust, but we 
would like to obtain all evaluation performance of the solver; thus, it 
was defined: 

P(t)s =  
1

np
size{p ∈ P ∶  rp,s  ≤ t} .  

The P(t)swas probability for solver s ∈ S that a performance ratio  
rp,s was within a factor   t ∈ R of efficient ratio. Then, function Ps  
was the cumulative distribution function for the performance ratio. 
The performance profile  P: R → [0,1]  as a solver as non-
decreasing, piecewise, and continuous from the right. The value 
P(1)s  is the probability that the solver will perform better than the 
rest of the solvers. In all, a solver with high values of P(t)s or at the 
top right of the figures is preferable or represents a robust solver. 

Table 1: A list of test problems 
Initial points Dim Problems No. 

(5, 5) 
(8, 8) 2 Booth 1 

(-1, 2) 
(-1, 1) 2 Three-hump camel 2 

(-1, 2) 
(5, 5) 2 Six-hump camel 3 

(-5, -5) 
(10, 10) 2 Trecanni 4 

(-1, 2) 
(7, 7) 2 Zettl 5 

(0, 0) 
(-1, -1) 2 Leon 6 

(5,5,5,5) 
(10,10,10,10) 

(-1,-1,-1,-1) 
(10,10,10,10) 

4 
 

4 

Extended. Maratos 
 

Arwhead 

7 
 

8 

(-1, -1, -1, -1) 
(5, 5, 5, 5) 

4 
 Freudenstein & Roth 9 

 
(2, 2, …, 2) 

(10, 10, …, 10) 
10 

 Generalized Quadratic 10 
 

(0, 0, …, 0) 
(10, 10, …, 10) 10 Fletcher 11 

(2, 2, …, 2) 
(-3, -3, …, -3) 10 Generalized Tridiagonal 1 12 

(1, 1,  …, 1) 
(-5, -5, …, -5) 10 Hager 13 

(-1.2, -1.2, …, -1.2) 
(3, 3, …, 3) 500 Ex. White & Holst 14 

(2, 2, …, 2) 
(-5, -5, …, -5) 1000   

(3, 3, …, 3) 
(10, 10, …, 10) 1000 Extended Rosenbrock 15 

(-1, -1, …, -1) 
(-2, -2, …, -2) 10000   

(-1, -1, …, -1) 
(20, 20, …, 20) 1000 Extended Himmelblau 16 

(-1, -1, …, -1) 
(20, 20, …, 20) 10000   

(-5, -5, …, -5) 
(5, 5, …, 5) 1000 Shallow 17 

(-1, -1, …, -1) 
(2, 2,…,2)  1000 Extended Beale 18 

(-1, -1, …, -1) 
(0.2, 0.2, …, 0.2) 10000   

 
(-2, -2, …, -2) 

(-10, -10, …, -10) 
(1, 1, …, 1) 

(-20, -20, …, -20) 

10 
 

100 
Extended DENSCHNB 19 

(5, 5, …, 5) 
(-10, -10, …, -10) 

(5, 5, …, 5) 
(-10, -10, …, -10) 

10 
 

100 
Extended Penalty 20 

(10,10) 2 Matyas 21 
(-3,-3,-3,-3) 

(10,10,10,10) 4 Colville 22 
 

(-2,…,-2) 
(10,…,10) 100 Dixon and Price 23 

 
(-2,…,-2) 
(-2,…,-2) 

4 
100 Sum squares 24 

 
(10,…,10) 
(-1,…,-1) 4 Extended Wood 25 

 
(-1,…,-1) 
(5,…,5) 
(5,…,5) 

4 
100 

1000 
Strait 

26 
 
 

(-2,…,-2) 10 ARWHEAD 27 
(-5,…,-5) 10 Generalized  Rosenbrock 28 
(-4,…,-4) 100 Quartic 29 

(-10,…,-10) 
(-7,…,-7) 

10 
100 DIXON3DQ 30 

 
(2,…,2) 10 NONSCOMP 31 

(-5,…,-5) 100 POWER 32 
(3,…,3) 100 Quadratic QF1 Extended 33 

(10,…,10) 
(-3,…,-3) 

10 
1000 Quadratic Penalty QP2 34 

 
(-3,…,-3) 1000 Quadratic  Penalty QP1 35 

 
Figure 1: Performance profile based on the number of iterations  
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Figure 2: Performance profile based on the CPU time  

 

Clearly from Figs. 1 and 2, the MRMIL+ curve lies above the RMIL, 
MRMIL, and RMIL+ curves. Therefore, the MRMIL+ method 
performs much better than the other three methods. Moreover, 
MRMIL and MRMIL+ methods solve all problems, whereas RMIL+ 
and RMIL solve about 83% of the problems. Therefore, since 
MRMIL+ has the top curve and it solves all problems, we can 
conclude that it is the best method. 

5. Conclusion  

In this paper, based on Rivaie et al. (2015), we have presented a 
modified version of the RMIL+ conjugate gradient method. The 
proof of the sufficient descent property and of the global 
convergence of our modified method when it is applied under the 
strong Wolfe line search has been established. Moreover, to show its 
efficiency in practical computation, we have compared it with the 
RMIL, MRMIL, and RMIL+ methods. The result of this comparison is 
that our modified method performs much better than the others. 
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